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TRANSIENT HEATING OF THIN PLATES 

ABSTRACT 

Two classes of heating problems Involving the heating of thin plates 

over a portion of their surface are considered.  Such problems have 

mumerous applications, one such application being the determination of 

the temperature rise in materials upon which a laser beam is directed. 

The heating effects caused by a laser beam fits into the class of 

problems for which the heating source has circular symmetry. The second 

class of problems arises when the source term has symmetry about a line 

on the surface. Solutions in the form of a definite integral are 

obtained for both classes of problems for a general time independent 

source of unspecified spatial distribution. Several solutions in closed 

form are obtained for particular source functions and for particular 

values of the various parameters of the problem. For the case of a disk 

source an error bound useful in the numerical quadrature of the integral 

solution is obtained. 
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LIST OF SYMBOLS 

c specific heat 

erf(x) error function 

erfc(x) complementary error function 

E, (x) exponential integral function 

h heat transfer coefficient 

I (x) modified Bessel function of the first kind 
n 

J (x) Bessel function n 
K (x) modified Bessel function of the third kind n 
k thermal conductivity 

q(r) dimensionless circular symmetric source function, See Eq.(9) 

q(x) dimensionless line symmetrical source function 

q (a) Fourier cosine transform of q(x) 

q (a) zero order Hankel transform of q(r) 
H 

Q(R>/3) source function 

^o flux intensity at center of heat source, Q(o,j3) 

r dimensionless radial coordinate, R//J 

R radial coordinate 

t dimensionless time. See Eq.(5) 

T dimensionless temperature. See Bq. (7) 

u (a) Fourier cosine transform of u(x) , See Bq. (70) 

v^Ca) zero order Hankel transform of v(r) , See Eq. (16) 
n 

X cartesian coordinate 

a thermal diffusivity 

ß parameter in source function 

IXx) gamma function 

5 plate thickness 

e dimensionless heat  transfer coefficient,  See Bq.(8) 

6 temperature 

0 initial temperature,  temperature of cooling medium 
o 
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LIST OF SYMBOLS (cont'd) 

p      density 

a Integral transform variable 

T time 
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I.  INTRODUCTION 

Several  types  of conduction heat  transfer applications  involve  the 

determination of transient  temperature in a  thin plate heated over  a 

portion of its  surface,   the  surface being  simultaneously cooled  through 

surface convection.     Typical applications  include  the heating of  thin 

metal plates with a  laser or incendiary,  drilling holes in metal, 

acetylene burniig,   arc welding and friction heating of machine  parts. 

Solutions for uniform disk    and uniform strip    sources were obtained by 
1 * 

Thomas   ,   the solutions being in the form of definite integrals for  the 

most general cases.     For special cases such as no cooling,  steady state, 

or at the center of  the heated area, Thomas  reduced  the general integral 

solutions  to the form of functions for which tables exist.    In this 

report the results cited above are generalized to include solutions for 

all time independent source functions meeting certain fairly general 

criteria.    Additionally several new results  in closed form are obtained. 

For the case of a disk source the general integral  solution is in the 

form of a definite  integral on the interval   (0,«).     For this case an 

error bound is obtained which yields an upper bound on the error in- 

curred when this  integral is approximated by numerical quadrature over 

finite  limits. 

II.     CIRCULAR SYMMETRIC SOURCES 

We assume  the  thin plate of thickness 5 has  constant thermal 

properties,  the cooling effect can be represented by Newton's Law of 

Cooling and the temperature gradient across  the  thickness of the  thin 

plate is negligible.    We also assume that the initial temperature and 

the temperature of the cooling medium is constant at fl = 9 .    Under 

these conditions and for a circular symmetric source. Fig.   1,  the 

applicable partial differential equation,  initial condition and 

boundary conditions are  the following: 

^■||i[«|)->-eo)+*p>R>o.r>o      (i) 
6 = 0o R ^ 0, r = 0        (2) 

References are Hated on page 24, 



CIRCULAR SYMMETRIC  SOURCE 

h(Ö-Öo) 

MÖ-ft)) 

Fig.   1 
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e = |^=0 R - », T i 0         (3) 

fl<« R=0,T^O.       (4) 

In the  usual fashion it is desirable  to work with dimension less 

variables.    If we  let 

t = orrß'2, (5) 

r = Rß'1, (6) 

T = k6(fl  - ö0)ß'\] (7) 

A"^"1, (8) €    = 2h 

q(r) = QCjSr.^Qj1, (9) 

where 

Q0 ■ Q(0,fl), (10) 

-1 -1 a = k^)    c (U) 

then the problem can be expressed in the following dimensionless form: 

IT ' 1^ + r H " ^ + q(r) ' r > 0' t >0     (12> 
T = 0, r^ 0,  t = 0       (13) 

T=-p=0, r - •, t ä 0      (14) 

T<» r=0,  tsO.     (15) 

The  technique employed to obtain a solution to (12)   -  (15)   is  the 

integral transform method.    The zero order Hankel transform of any 

arbitrary function v(r)  is defined by 

vH(a) rv(r)Jo(ar)dr, (16) 
o 

where its inverse transform is given by 

JO 

v(r) = J avH(a)Jo(ar)da. (17) 
o 

By taking the zero order Hankel transform of (12) , we obtain the 

subsidiary equation 

11 



df (0,t)      2    2- 
-~ -(az + €Z)TH(a.t) + qH(a). (18) 

2 
This result arises from the identity (see Carslaw and Jaeger ) 

r^M^v"^ - -'2 Avv«^    (i9) 
o o 

which holds if v(0) is finite and 

v(r) - ^|^- ^ 0 as r - «. (20) 

From (13) and (16) we have 

TH(0,0) = 0. (21) 

The  solution of  (18)   subject  to  (21)  is 

fH(a,t)  = qH(a)(a2 + €2)'1[l- exp[-t(o2 + c2)]]. (22) 

From  (22)  and   (17) we have 
00 

T(r,t)  = J qH(a)(a2 + €2)"1(TJ0(ar)[l-exp[-t(a2+€2)]]do.   (23) 
o 

This solution is valid for all circular symmetric sources for which a 

Hankel transform qu(a) is defined. For the most general cases the above 
H 

integral cannot be reduced further and one must resort to numerical 

quadrature for obtaining numerical values. 

A. Gaussian Circular Source 

A Gaussian circular source is defined by 

2 -2 
Q(R,/3) - Qoe"

R P    , (24) 

which in dimensionless form reduces to 

2 
q(r) - e"r . (25) 

We consider the case for no cooling, c a 0. For this case qu(a) is n 
* 3 

given by  (10),   p.29, Erdelyi   ,  et.  al   , Vol.2 

Hereafter the  two volumes of this reference will be referred  to as 

[1M0T1] and   [BM0T2]. 
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qH(ff) - ^e 
'& (26) 

The general solution (23) reduces to 

T(r,t) - * fa^J^ar)^-^2 - e'^^Jda. (27) 

(28) 

To evaluate  this integral we make use of the identity 
00 2 i     •     2        "1 

: o^e"30 Jo(ar)do = i(ir/a)*   |  e'a  (8a)    Ii [a2(8a) "^da, 
o r * 

which rs derived by combining  (7)   p.5 and   (8)   p.29 of  [EM0T2].    We also 

have  the  identity 

Ii(z) -  (2Trz)^(eZ  - e'Z). (29) 

Hence 

n00    i       -2 -1   -aa  T   ,_ v. a    e       J  (ar)da = o o 

.2   -1 

0    i i«2  -1 

a'1^ - e"*7 a   )da. (30) 

By letting y = ^a a     , wa obtain the following identity: 

o    e da = ^ 1 2  -le    y   dy 

tr a 
(31) 

= jB^Jr^'1). 

From (27),   (30) and  (31) we obtain the final result 

T(r,t) - i{B1[r
2(4t+l)'1]  - B^r2)}. (32) 

We note that this solution is unbounded for r =« 0;  thus,we treat this 

case seperately.    For r = 0 in (27) , we obtain 

r / (4t+l) 

-y -1. 
e    y    dy 

00 

yyy •ldy] 

iim  i rr 

-04jr2/(4t+l) 

-y -1, e ■'y    dy. (33) 

Since the integral is to be evaluated near the origin, we can  let 

1 - y+ 0(y2) (34) 

13 



obtaining 
z 

IT 

T(O.t)  = ir
1*m

0 J 2 [(1 - y)y"1 + 0(y)]dy 
r /(4t+l) 

-iln(4t+l)+r
llm

0[0(y2)l^/(4t+1)] 

(35) 

(4t+l) 

= iln(4t + 1). 

Hence,  the solution for a Gaussian circular source and no cooling is 

given by 

i[E1[r
2(4t+l)'1]  - E^r2)}.    r >0 

iln(4t +1), r - 0. 
T(r,t) (36) 

q(r) 

B.  Uniform Disk Source 

A uniform disk source is defined by 

Q , R * 0 
Q(R,fl) = (37) 

0, R > /3, 

which in dimensionless form reduces to 

1, r ^ 1 

0, r>l. (38> 

The zero order Hankel transform of (38) is given by (3) , p.47 of 

[BM0T2]. 

qH(a) - J^ff)/». (39) 

For this case the general solution reduces to 

00 

T(r,t) - J Jo(ar)J1(a)(a
2 + c2)"^! - exp{-t(a2 + €2)}]da,    (40) 

o 

an integral solution obtained by Thomas . In this form the above 

integral cannot be reduced further. For steady state the integral 

reduces to 

00 

T(r,«) - J Jo(ar)J1(o)(a
2 + cV^io. (41) 

For r > 1 this integral is given by (12), p.49 of [BM0T2], namely. 

14 



T(r,«)  =  €"1I1(e)Ko(€r), r > 1. (42) 

For r  < 1 we delete  the transient  terra in  the original  partial 

differential equation and obtain 

r'^Cr^)   -  €2T + 1 = 0. (43) 

The homogeneous  Aquation is one of the standard Bessel  types which has 

solutions I   (cr)  and K  (cr).    We  can eliminate K  (er),   since we expect a 
o o o 

finite   temperature at r = 0.     The nonhomogeneous equation  thus has a 

solution 

T(r,oo)  =  f"2 + CIo(€r),  r < 1. (44) 

We determine  the  constant C by forcing  the  solution to be  continuous at 

r =  1,   that is,  equating  (42)   and   (44)  at r =1.    We obtain 

C = f"1[l1(€)Ko(c)   -  €"1][I0(€)]'1. (45) 

By employing  tht Wronskian 

we have 

This yields 

I^OK^C)  + I0(€)K1(C)   = C"1, (46) 

C =  -€m\(€). (47) 

T(r,») = c"2 -   €'1K1(€)Io(€r) (48) 

The  steady state  solution for a disk source with cooling  is  thus 

given by 

c"2[l  - €K   (€)I   (Cr)],   r i 1 
T(r,co)  =  { 0 (49) 

C^MOK  (cr), r > 1. 
i        o 

For the general case  (40)   can be approximated by an integral over 

finite   limits.   Let 

T(r,t)  = J J0(Or)J1(o)(o2 + e2)"lCl - exp{-t(a2 + €2)}]do + B.      (50) 
o 

15 



We will now determine a U such that   B     is bounded by some a priori 

acceptable error.    First we determine a bound for J  (z)  and J.(z).    From 

Watson   ,   p.74 

JAz)  - iCH(1)(z) + H(2)(z)L (51) n *   n    ' n 

and Watson p.   168 

H(1)(2)  - (2/irz)*eie/r(n4)   ["•'" un^(l + ^iu/z)n^du. 
n Jo 

H(2)(z)  -  (2/«rz)Vie/rXn+£)   r e"U un^(l  - ^iu/z)n^du, (52) 
n ^o 

where    9 =» ö  - nTr/2   - tr/4,  and 2n is not an odd positive integer.  Since 

|l  - iu/2z| =• |l + iu/2z|  =  [1 +  (u/2z)2]^, (53) 

then 

|jn(z)|^ (2/irz)^[r(n-»^)]'1J e"u[u[l +  (u/2z)2lij      du. (54) 

For n = 0, we have 

|JO(Z)|   s (2/irz)*[r(^)]"1J u"*e'U[l + (u/2z)2ridu 

s (2/ffz)*[n^)]"1[ u^le'Udu -  (2/irz)*. (55) 
Jo 

For n a 1, wherä we assume z 2 ^, we obtain 

1^(2)1   s (2/ffz)*Cr(|)]'1J u*[l + (u/2z)2lS"Udu 
o 

^ (Z/TO^CrCl)]"1] [u2 + u4]4e"udu 

The bounds derived here are generalized and the derivation is put 

forth in more detail in a forthcoming report by the authors. 
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(2/wz)*[nl)]"1[ J 2S"udu + J 2^ie"Udu] 

7 -1    -1      -A 2*(1 + e l)v    («)T (56) 

Now  in  (50) 

00 

|E|   <:  ' |J  (ar)| I^Ca)! (o2 + c2)"^. (57) 
V  0 

If we apply the bounds  (55)  and  (56)   to  (57),  this yields   (assuming 

r > 0) 

|E|   <: ABr"*[ [a(a2 + c2)]"^, (58) 
'U 

where 

A = 2^(1 + a" V1 (59) 

and 

B =   (2/»rA (60) 
This  implies  that 

|E|   ^ iABr"*c"2ln[(U2 + €2)u'2]. (61) 
If we solve for U, we obtain the limit of integration,  that is, 

U -  cCexpUrVlBlA'V1]  - l]"*, (62) 

where    E    is  the error.    For  the case when r = 0, we use the fact 

J   (0)  » 1.    Hence o 

| i AF a 2a"2da 

^ fAU"^, (63) 

or 

U -  (^A|B|"y. (64) 

III.  SOURCES SYMMETRICAL ABOUT A LINE 

The partial differential equation,   initial and boundary conditions 

governing this case in dimension less form are 

2 
^ - ^7 -  C2T + q(x) ,  x > 0,   t > 0 (65) 

3x 

17 



T = 0, x ^ 0,   t = 0 (66) 

f = 0> x » 0,   t > 0 (67) 

-f-o. x -» »,   t ^ 0. (68) 

Condition (67)arises from the assumption that the heat source is 

symmetrical about the line x » 0, that is, 

q(x) = q(-x). (69) 

Again we employ the integral  transform method for obtaining a  solution. 

We define  the Fourier cosine transform of an arbitrary function u(x)  as 

G (a) = (2/tr)^r u(x)cos(ax)dx, (70) 
C do 

and its inverse transform by 

*r - 
u(x) = (2/tr)B u (ty)cos(cTx)do. 

J  c 
o 

(71) 

Employing the  identity 

ir00^2 

(2/ff)*J^-|co8(ax)dx - -a2Gc(o) - (2/ff)*|- 
odx x=0 

(72) 

and taking the Fourier cosine transform of (65) , we obtain the subsidiary 

equation 

dT (ar,t)     2   2 - 
 -(a^ + OTc(a,t) + qc(0), dt 

which is subject to 

As before  the  solution is 

T  (a,0)  » 0. 
c 

(73) 

(74) 

fc(a.t) - qc(a)[a2 + €2]"1[l - exp{-t(o2 + c2)}].  (75) 

Taking the inverse Fourier cosine transform, we obtain 

T(r,t) -(2/ir)^[ qc(a)[a2 + €2]"1[1 - exp{-t(a2 + e2) ]co8(x(y)da.       (76) 
o 

This solution is valid for all sources symmetrical about the line x =» 0, 

for which a Fourier cosine transform exists and for which (69) holds. 

18 



A.     Uniform Strip Source 

A uniform strip source is defined by 

(V x ^ 
Q(x,/3)  =< (77) 

(0,      x    > 0. 

In dimensionless form this equation becomes 

|l,    x    ^ 1 
:x)  m\0t    x    >1. q(x) =|o.    .    - (78> 

The Fourier cosine  transform of  (78)  is 

q   (O)   =   (Z/^^ff^sinCo). (79) 
c 

Inserting  (79)  into  (76), we obtain the integral solution obtained by 

Thomas 

00 

T(x,t) = (2/if>\ a'1sin(a)[a2 + c2]"^!  - exp{-t(a2 + e2)}> 
o 

xcos(xo)dc. (80) 

Let 

T(x,t) = T^x)  - T2(x,t), (81) 

where 

00        . 

Tj^x)  = (2/ir)J a'^in^Co2 + c2]"1cos(xa)da (82) 
o 

and 

2    oo 2 
T2(x,t) =  (2/ir)e"€ 'J o-1sin((j)[o2 + cVV*0 cos(xo)da.   (83) 

From  (4),   p.19,  of   [EMOTl] 

2 -r 
[1   - e    co8h(€x)],   0  ^ x  ^ 1 

(84) •l<X>  '      -2  - lee CX8inh(€), 1 < x. 

In evaluating  (83), we first consider the related integral 

2    oo 2 
w(x,t)  »  (2/tr)e"C t[o'1[o2+ C2]"^"'0 sin(xa)da (85) 

(2/ff)c"2e"t€ J [o"1  - a(02 + €2)'lyta sin(xa)do.     (86) 
o 

19 



By employing (21), p.73 and (26), p.74 of [BMOTl], we obtain 

2 
w(x,t) - c ^e vv erf(Jxt"^) + 

.2e-tC 

^c"2[e€Xerfc(€t^ + ^xt"^) - e'CXerfc(et^ - |xt"^)].   (87) 

It can be shown that 

T,(x,t) - ^[w(l+x,t) + w(l-x,t)]. (88) 

If we collect these results, the solution for a uniform strip source is 

given by 

(89) 

where 

T^x) 

T(x,t)  = T1(x)   - T2(x,t), 

-2 -r 
€    [1  - e  *cosh(cx)],  0 ^ x ^ 1 

€* e"€Xsinh(€), 
(90) 

1 < x 

and 
2 

T2(x,t)  = ic"2{e't€ [erf{|(l+x)t"^}  - erf[^(l-x)t^}J + (91) 

i[eC(1+x)erfc{€t* + £(l+x)t"*}  - e"€(1+x)erfc{€t* - ^(l+x)t"*} + 

e€(1"x)erfc{€t^ + i(l-x)t^}  - e-€(1-x)erfc[ct* - ^(l-x)t^}j}. 

B.    GAUSSIAN STRIP SOURCE 

We define a "Gaussian strip source" by 

-xW 
Q(x,/3) - Qoe x '* . 

In dimensionless form this source is given by 

2 
q(x) - e 

and its Fourier cosine  transform, which is obtained from (11), 

p.   15 of  [KM0T1] is 

(92) 

(93) 

qc(a) - 2-V*> (94) 

20 



The solution for a strip source is thus 

2 
T(x,t) = tT^J e'^7 [a2 + €2]'l[l - exp{-t(a2 + f2))]cos(ax)da.     (95) 

Employing  (15),   p.   15 of   [EMOTl] we obtain 
2 

T(x.t) = ic'V^e*6 {e"€X[erfc(^€-x)   - 

erfc[^€(4t+l)^ - x(4t+l)"^}] + 

e€x[erfc(^c+x)   - erfc{^€(4t+l)* + x(4t+l)"*}]}.       (96) 

Note  that in the  solutions  for sources  symmetrical about a  line,   the 

domain of interest,   -® < x < », has been restricted to 0 ^ x < » for 

mathematical simplicity.    This causes no  loss of generality,  since  the 

solutions obtained can be extended to negative x simply by employing 

the symmetry condition T(-x)  = T(x),  x 2 0. 

IV. GRAPHICAL RESULTS 

Figure 2 is a graphical presentation uf the dlmensionless 

temperature rise at the center of the heated uniform strip divided by 

the dlmensionless time as a function of the dlmensionless group ß{oir)     . 

By use of the dlmensionless variables defined in the List of Symbols 

the effect on the temperature rise above ambient,   (0-0 ), can be 

determined as a function of any of the variables k. 5. h, 0 . a, T* 
o 

Figure 3 Is a graph of the same quantities as Figure 2 for no 

surface cooling and is a coraparson of the transient temperature rise 

above ambient at the source center for the sources listed. 
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Fig. 2. Effect of strip width, heating time, and heat transfer coefficient 

on maximum temperature of thin plate heated by a uniform strip source. 
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Flg. 3. Effect of source size, source type, and heating time on 

maximum temperature of thin plate with no cooling (€=»0). 
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II    ABSTRACT 

Two classes of heating problems involving the heating of thin plates over a portion 
of their surface are considered. Such problems have numerous applications, one such 
application being the determination of the temperature rise in materials upon which a 
laser beam is directed. The heating effects caused by a laser beam fits into the class 
of problems for which the heating source has circular symmetry. The second class of 
problems arises when the source term has symmetry about a line on the surface. 
Solutions in the form of a definite integral are obtained for both classes of 
problems for a general time independent source of unspecified spatial distribution. 
Several solutions in closed form are obtained for particular source functions and for 
particular values of the various parameters of the problem. For the case of a disk 
source an error bound useful in the numerical quadrature of the integral solution is 
obtained. 
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